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ABSTRACT
�e Island-Cellular Model (ICM) is an important population distri-
bution approach for Evolutionary Algorithms (EAs). �is hybrid
approach combines the Island Model (IM) and Cellular Model (CM)
in a two-layer hierarchical model. Although the ICM has been
shown to be an e�cient way to implement EAs, there is still a lack
of knowledge about its parameters and its performance for Large-
Scale Global Optimization (LSGO) problems. However, the ICM
approach is able to enrich the evolutionary search by keeping the
population diversity in EAs. �us, this paper proposes to implement
the ICM approach for LSGO problems using the Di�erential Evo-
lutionary (DE) algorithm. It also proposes an experimental study
of the ICM parameters by investigating their impact on the EA.
Experimental results on Large-Scale Global Optimization Bench-
mark Functions show that the ICM approach for the DE algorithm
improves its performance. Furthermore, the results collected from
di�erent ICM approaches indicate that there is a trade-o� between
solution quality and convergence speed.
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1 INTRODUCTION
�e Island-Cellular Model (ICM) is a hybrid approach for Evolu-
tionary Algorithms (EAs) [10, 12]. Hybrid distributed approaches
are able to improve the scalability and problem-solving capability
[10] of EAs. A wide variety of studies have successfully connected
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hybrid distributed approaches with di�erent EAs [4, 5, 13, 17]. Par-
ticularly, related works about the ICM have numerically shown
their good performance with Genetic Programming (GP) algorithms
[9, 10].

Basically, the ICM combines two distributed models: the island
and the cellular models. �us, in this approach, di�erent layers hier-
archically couple the models. Firstly, the Island Model [6] forms the
upper layer of ICM. �e main idea of an IM is to divide a population
of candidate solutions (also called individuals) into subpopulations,
known as islands. �e islands remain relatively isolated and evolve
independently. Periodically, the migration process occurs and indi-
viduals can be exchanged between islands. Additionally, the lower
layer implements the Cellular Model (CM) [6] for each island of
the model. �is approach arranges the individuals into a toroidal
grid in which they only can reproduce with other neighbors. Both
approaches allow EAs to keep the population diversity and improve
their performance [12].

Although EAs have been shown to be powerful to problems
solvers, as the size and complexity of problems increase, new chal-
lenges have been posed to these algorithms. In response to these
challenges, hybrid models to distributed EAs have been proposed.
�eir success is due to their characteristics, such as parallelism and
exploitation of the solution space. �erefore, the goals of this paper
are: (i) to propose an Island-Cellular Model Di�erential Evolution
(DE) algorithm for Large-Scale Global Optimization (LSGO) prob-
lems; and (ii) to provide an experimental investigation of the ICM
and their parameters to foster the understanding of their impact
in the context of the DE. �e reasons for the DE choice can be
clari�ed by its high performance, reliability, simplicity and easy
implementation [29].

In order to achieve the goals de�ned, this paper presents a thor-
ough experimental analysis of the ICM performance. For this, ICM
versions of the Di�erential Evolution algorithm were implemented.
�e experiments were conducted in the Large-Scale Global Opti-
mization Benchmark Functions [16]. �e results show that there
is a compromise between achieving good solutions and fast con-
vergence rates. Furthermore, in general, the ICM signi�cantly
improves the EAs performance.

�e remainder of this paper is organized as follows: Section
2 describes the Large-Scale Global Optimization Problems, Dif-
ferential Evolution algorithm and reviews of Cellular Model and
Island Model; Section 3 presents the Island-Cellular Model for Dif-
ferential Evolution algorithm; Section 4 describes details of the
experimental setup and statistical tests used; Section 5 presents the
results obtained in the Large-Scale Global Optimization Benchmark
Functions; and, �nally, Section 6 presents a �nal discussion and
conclusions of the paper.
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2 OVERVIEW
2.1 Large-Scale Global Optimization Problems
Recently, most real-word optimization problems exhibit a large
number of decision variables. �is type of optimization problems
are known as Large-Scale Global Optimization (LSGO) problems.
Generally speaking, the increasing number of decision variables in
an optimization problem increase their landscape complexity and
the domain search exponentially. Due to these characteristics, this
research area has received special a�ention over the last years by
the most important conferences and journals, as mentioned in [20].

With the purpose of tackling these new optimization challenges,
standard metaheuristics have been specially designed to a�empt
to solve them. Valuable a�empts to implement variants of Genetic
Algorithms (GA) [11], Particle Swarm Optimization (PSO) [14],
Di�erential Evolution (DE) [24] and other metaheuristics [2, 3]
have been developed for LSGO. However, according to [20], the
performance of these metaheuristics tend to deteriorate due to
characteristics of LSGO.

2.2 Di�erential Evolution Algorithm
Proposed by Storn and Price [25], Di�erential Evolution (DE) is
one of the most important Evolutionary Algorithms (EAs). Initially
designed for global optimization over continuous spaces, DE has
been also applied to problems with discrete domain [22, 23]. �e
DE algorithm is an optimization method considered reliable and
versatile [29].

Similarly to other EAs, the DE is a population-based optimiza-
tion method and its basic idea is to iteratively evolve a population
of candidate solutions (also called individuals). For this, individuals
from the same population are combined to generate new candidate
solutions. �en, if these new individuals have a be�er �tness value,
they replace their parents for the next generation. �e classic ver-
sion of DE has three control parameters: (1) NP , which de�nes the
population size; (2) F , which de�nes the scale factor of the pertur-
bations generated by the mutation operator; (3) CR, which de�nes
the crossover constant. More details are described in Algorithm 1
and they can also be found in [25, 29].

2.3 Models of Distributed Evolutionary
Algorithms

Distributed EAs (dEA) are popular and e�cient approaches to im-
plement EAs. �ese approaches are especially recommended when
designed to solve problems with extremely high computational
cost of �tness evaluation or a huge number of local optima [12].
Furthermore, they can improve its capacity to �nd satisfactory re-
sults within a reasonable time compared to classic versions of the
algorithm [12].

According to [12], the models of dEAs can be classi�ed into
dimension-distributed and population-distributed. �e �rst one,
dimension-distributed model, proposes to divide partitions of the
problem dimensions, as for example: Coevolution Model [26]. �e
main advantage of dimension-distributed models is the dimension
reduction. However, these algorithms are not suggested to solve
problems with complex interdependencies. �e purpose of the sec-
ond approach is to distribute individuals of the population, such

Algorithm 1: Di�erential Evolution
1 F, CR, NP← InitializeParameters();
2 pop← InitializePopulation(NP);
3 while not StopCriteria() do
4 pop aux← ∅;
5 for each individual x from pop do
6 Select other 3 random individuals a, b and c from pop

where a , b , c , x;
7 Select a random index j between 1 and the number of

variables;
8 for each position i of individual x do
9 r ← real value between 0 and 1 with uniform

distribution;
10 if r ≤ CR or i = j then
11 yi ← ai + F * (bi - ci );
12 else
13 yi ← xi ;

14 if y is be�er than x then
15 Add y in pop aux;
16 else
17 Add x in pop aux;

18 pop← pop aux;
19 Return the best solution found;

as in a Cellular Model [6], Island Model [6], and Hybrid Models
[9, 10, 12]. Population-distributed models have been successfully ap-
plied to EAs and it can be explained by its e�ciency and scalability
[12].

Additionally, as previously reported, population-distributed mod-
els are bene�cial to the evolutionary search by improving the pop-
ulation diversity, thereby avoiding local optima and facilitating the
search of the whole solution space [12].

• Cellular Model

�e Cellular Model (CM) is an important population-distributed
approach for EAs [6, 12]. In this approach, the population is spa-
tially structured in a grid in which each individual can only interact
with a set of neighbor individuals to reproduce. Usually, the CM
approach arranges the individuals on a toroidal grid of two dimen-
sions. Figure 1 illustrates an example of CM disposing 25 individuals
(represented by circles) on a bi-dimensional grid (5x5) in which a
parent individual (represented by the gray circle) can only couple
with 4 other individuals (represented by the black circle).

Four crucial parameters must be de�ned in a CM to calibrate its
performance:

Grid dimension: de�nes the number of dimensions in the
CM grid;

Grid size: de�nes the maximum number of coordinates of
the CM grid;

Neighborhood pattern: describes the set of neighbors indi-
viduals for each individual in the population;
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Figure 1: Cellular Model example.

Synchronization: de�nes which individuals of the current
population are replaced in the next iteration.

�e classical approach of CM is its parallel implementation.
Moreover, the CM has also been proved as an important strat-
egy to keep the population diversity. �is approach promotes the
slow di�usion of solutions through the grid in EAs and it is able
to enrich the exploitation of the solution space. Moreover, studies
demonstrated that the CM improves accuracy and convergence
[7, 8].

• Island Model

�e Island Model (IM) is also classi�ed as a population-distributed
approach for EAs [6, 12]. Its rationale is to divide a population of
solutions into subpopulations. During the evolutionary process, the
subpopulations, also known as islands, remain relatively isolated
and evolve independently executing its own EAs for some time.
�en, solutions can be exchanged between the islands in a process
called migration. �is cycle repeats until the stop criteria are met.

�e independence of islands tends to keep the population diver-
sity, thereby improving the evolutionary process. Nevertheless, the
IM collaboration performed by the migration process is another
fundamental aspect of this approach. �e introduction of new in-
formation in the subpopulations by exchanging solutions allows
be�er-performing subpopulations [19].

�is model has some parameters to be con�gured in its design.
As reported by [19], these parameters directly impact the IM per-
formance (solution quality and convergence speed) and they are
summarized as follows:

Number of islands: de�nes the number of subpopulations
in the model;

Migration topology: describes the communication struc-
ture of the IM;

Migratory �ow: describes the path of the emigrants (during
the migration process) inside the communication structure
of the IM;

Migratory frequency: de�nes the periodicity of migration
process;

Migratory rate: de�nes how many individuals migrate from
an island to another;

Migratory policy: describes which individuals will be copied
and replaced when the migration process occurs;

Synchronization type: de�nes the type of synchronization
(synchronous or asynchronous) for performing the migra-
tion process.

�e migratory �ow is one of the critical parameters for designing
an IM [19]. Many con�guration procedures of migratory �ow have
been presented in the literature, such as Random [27], Ring [6],
Roule�e Wheel [18], and Tournament [18]. Classi�ed as a static
approach, the Ring con�guration of migratory �ow is de�ned a
priori and does not change over time [19]. �e Ring con�guration
is the probably the most popular approach and it is formed by a
closed circuit of islands. �e Random, Roule�e Wheel, and Tourna-
ment approaches are known as dynamic con�guration procedures
of migratory �ow [19]. �e basic idea of these approaches is to
implement selection methods for choosing immigrant individual
[19]. �us, for each island of the IM, the selection method selects
the source island from which individuals will be received and an
individual can not be sent to its own island.

�e IM is able to improve the evolutionary search of EAs through
a be�er balance between exploration and exploitation of the solu-
tion space [19]. �is e�ciency can be explained by the maintenance
of population diversity, independent evolution, and collaboration
between islands of the model. Besides, the IM is a popular way to
implement EAs even in a serial architecture and related works have
shown the high performance of IMs [6, 28].

3 ISLAND-CELLULAR MODEL
�e Island-Cellular Model (ICM) is a hybrid approach based on the
hierarchical combination of two distributed models for EAs [10, 12].
�e ICM takes advantages of both approaches by providing high
scalability and fault-tolerance [10]. For the �rst time, this approach
was successfully connected with Genetic Programming (GP) [10].
According to [9], the ICM provided an e�cient implementation
of distributed GPs improving the accuracy in the generation of
classi�ers.

�e general idea of the ICM is to create upper and lower layers
which are composed by the IM and CM approaches. Firstly, the
population of candidate solutions is divided into subpopulations and
then the CM is applied for each subpopulation previously de�ned.
�is approach accumulates parameters of both the IM and CM
approaches. Figure 2 exempli�es an ICM formed by four islands.

�is paper proposes to apply the ICM approach to the Di�erential
Evolution (DE) optimization method. For this, the classic version
of the DE algorithm is adapted to implement the CM where the
population is spatially distributed in a grid. In addition, the CM
version of the DE restricts the set of available individuals to generate
new solutions by the mutation operator. In the CM version of the
DE, only individuals from the set of neighbor individuals can be
selected. As mentioned before, the set of neighbor solutions of a
parent individual is de�ned by the CM neighborhood parameter that
describes the neighborhood pa�ern, as illustrated by two examples
in Figure 3.
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Figure 2: Island-Cellular Model.

(a) Linear 9 (b) Compact 9

Figure 3: Two examples of neighborhood patterns for Cellu-
lar Model.

4 EXPERIMENTAL SETTING
In order to accomplish our goals, the ICM, CM and classic ver-
sions of the Di�erential Evolution algorithm were implemented.
As suggested in [24], the DE parameters were de�ned as CR = 0.9
and F was randomly chosen in the interval [0.5, 1.0] for each new
individual generated. More details on the ICM, CM and classic DE
parameters are shown in Table 1.

In order to compare di�erent versions of the ICM and other
approaches, the Benchmark Functions for Large-Scale Global Op-
timization [16] were used. All the ��een functions were de�ned
with 1,000 continuous variables and their details are described in
Table 2. See [16] for more details on the benchmark functions. For
each ICM con�guration, 10 independent runs were made for each
test function from the benchmark. �e evolutionary process was
terminated when either of the following conditions were met:

• �e maximum number of function evaluations (20∗106)
has been reached; or

• ∆f = fbest - ftarдet ≤ 10−3

where fbest represents the best result found by the algorithm so far
and ftarдet represents the optimal value known for the function.

�e experiments collected two outputs for the analysis: (i) num-
ber of function evaluations for convergence; (ii) the ∆f value
achieved. �e number of function evaluations measures the con-
vergence speed of EAs evaluated, while the ∆f value represents
the quality of solutions found.

Table 1: Set of parameters de�ned for the computational ex-
periments.

Parameter Values
ICM Parameters

Number of Islands 4, 8, 16
Population Size 25 individuals per island

Migratory Flow

Random[27],
Ring[6],

Roule�e Wheel[18],
Tournament1[18]

Migration Frequency 5, 15, 25 generations2

Migration Rate 1 individual
Migration Policy best substitutes random3

IM Synchronization synchronous
Grid Dimension bi-dimensional

Grid Size 5x5

Neighborhood Linear 9,
Compact 9

CM Synchronization synchronous 4

CM Parameters
Population Size 25
Grid Dimension bi-dimensional

Grid Size 5x5

Neighborhood Linear 9,
Compact 9

CM Synchronization synchronous
Classical DE Parameter

Population Size 25

Given the non-normality of the results, the nonparametric mul-
tiple contrast test5 was employed for the statistical analysis of the
number of function evaluations and quality of solutions (∆f ). De-
tails on the nonparametric multiple contrast test are available in
[15]. Furthermore, the statistical model considered a balanced de-
sign [21], with the ICM con�guration as an experimental factor,
and the signi�cance level α was previously de�ned as 0.05.

1�e tournament size was de�ned as 3 and the parameter kt equal 1.0 according to
[18].
2A migration frequency equals to 5, means that from 5 to 5 generations there will be a
migration process.
3It means that the best individual of an island substitutes a random one in the receiving
island.
4As suggested in [1], the synchronous update policy is be�er to any of the asynchro-
nous policies in relation to percentage of hits.
5Function mctp from nparcomp package of the statistical so�ware R.
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Table 2: Properties of optimization functions.

Properties Functions
Unimodal and Separable f1

Unimodal and Partially Separable f4, f8, f11
Unimodal and Non-Separable f13, f14

Unimodal and Full Non-Separable f15
Multimodal and Separable f2, f3, f12

Multimodal and Partially Separable f5, f6, f7, f9, f10

5 RESULTS
�is section presents the comparisons among di�erent con�gura-
tions of ICM, CM and DE classic. Firstly, the subsection 5.1 presents
a study of the ICM parameters. �e second part, subsection 5.2,
presents a general comparison of studied approaches.

5.1 Island-Cellular Model Parameters Study
Figures 4, 5 and 6 describe the interaction of the ICM parameters
studied (neighborhood, migratory �ow, and migratory frequency)
with the optimization problem in regards to the average number
of function evaluations until one of the stop criteria was reached.
�e Figure 4 demonstrates that di�erent neighborhood pa�erns
presented at least similar performance. However, it can be observed
in this �gure, the a slightly be�er performance of the Compact 9
approach for unimodal and multimodal functions.

Linear - 9 Compact - 9
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Figure 4: Cellular Neighborhood x Property Function.

�e interaction of migratory �ows in the ICM approach demon-
strates that all con�gurations have the same behavior for both type
of optimization functions, unimodal and multimodal, as shown in
Figure 5. Moreover, it is interesting to notice the ICM performance
using the Ring con�guration. Although the Ring migratory �ow
con�guration does not use any information about the evolution-
ary search, it has shown competitive performance. Regarding the

migratory frequency of ICM, Figure 6 indicates a lower number of
generations to perform the migration process tends to degrade the
convergence speed. �is behavior can be noticed on both unimodal
and multimodal optimization functions.
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Figure 5: Migratory Flow x Property Function.
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Figure 6: Migratory Frequency x Property Function.

5.2 General Study
Figure 7 presents the comparison performance of di�erent con-
�gurations for the ICM according to the parameters previously
described in Table 1. For this performance comparison, the quality
of solutions and convergence speed are represented and the results



GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Lopes, R. A. and Freitas, A. R. R.

Table 3: Pareto set of Island-Cellular Model con�gurations.

ICM Con�guration Number of Islands Migratory Frequency Migratory Flow Neighborhood
ICM–01 4 islands 15 generations Roule�e Wheel Linear - 9
ICM–02 4 islands 25 generations Random Compact - 9
ICM–03 4 islands 25 generations Ring Compact - 9
ICM–04 4 islands 15 generations Random Compact - 9
ICM–05 8 islands 15 generations Ring Linear - 9
ICM–06 8 islands 25 generations Ring Linear - 9
ICM–07 16 islands 25 generations Ring Compact - 9
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Figure 7: Experimental results of Island-Cellular Model approach.
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Table 4: Experimental results of Island-Cellular Model
Pareto set.

Approach
Average Number

of Function
Evaluations

Average Number
of�ality

Solutions (∆f )
ICM–01 12,138,612.66 114,796.55
ICM–02 11,168,298.0 139,725.12
ICM–03 11,329,323.33 127,228.86
ICM–04 12,356,096.66 110,395.21
ICM–05 11,129,529.33 150,296.14
ICM–06 10,993,794.66 154,517.59
ICM–07 10,950,960.0 200,796.77

were joined in groups by the number of islands. As observed in
Figure 7, the ICM approach with a small number of islands tends
to improve the quality of solutions.

In relation to the general results of di�erent con�gurations of
ICM, the trade-o� between the quality of solutions and convergence
speed is important to highlight. In order to clarify this point, the
non-dominated6 ICM con�gurations are identi�ed and the Pareto
front7 is graphically illustrated by a red dashed line in Figure 7.
�us, the ICM approaches overlapping the Parent front described
in this Figure are known as the set which is Pareto optimal. Taking
notice of the Pareto front, seven di�erent con�gurations of ICM
can be remarked and they are presented in Table 3.

Tables 4 and 5 present the experimental results of the ICM con-
�gurations in the Pareto front and the classic versions of CM e
DE, respectively. In Table 4, the con�gurations of the ICM marked
in bold represent the best con�guration in relation to each ob-
jective. Regarding convergence speed, the con�guration ICM–07
presented the minimal averaged number of function evaluations.
For the quality of solution, the approach ICM–04 presented the best
performance among all con�gurations.

�e results of the statistical tests regarding the number of func-
tion evaluations are described in Table 6. �us, p-values of the
statistical tests help us to determine the signi�cance of the results.
�e applied test considers all con�gurations of the Pareto front
(see Table 3 and 4) and classical algorithms (CM and DE), but only
paired tests of con�guration ICM–07 are presented. In this statis-
tical tests, only the e�ect of the methods was considered. Given
the con�dence level previously de�ned as 95%, the results show
that the ICM–07 con�guration signi�cantly spends fewer function
evaluations than the DE classic and CM approaches.

Table 7 presents the results of the statistical tests on the mean
of the quality of solution (∆f ) achieved by all con�gurations from
the Pareto front and classical versions. �is test considers only the
e�ect of the methods, ignoring the e�ects of the functions tests.
In this table, only the results for ICM–04 were displayed and they
show that it signi�cantly achieves be�er solutions than DE classic
and CM approaches with 95% of con�dence.

6A non-dominated set is a group of solutions such that all them are be�er than the
others for at least one objective.
7�e Pareto front is composed of all non-dominated solutions from the feasible solution
set.

Table 5: Experimental results of Cellular Model and Di�er-
ential Evolution classic versions.

Approach
Average Number

of Function
Evaluations

Average Number
of�ality

Solutions (∆f )
DE - Classic 14,584,812.5 56,831,241.48
CM - Linear 9 13,706,617.5 83,503,416.06
CM - Compact 9 13,651,048.5 55,795,725.98

Table 6: p-values of the statistical analysis for the number
of function evaluation.

Con�guration 1 Con�guration 2 p-value
ICM–07 DE - Classic 0.0000
ICM–07 CM - Linear 9 0.0000
ICM–07 CM - Compact 9 0.0000
ICM–07 ICM–01 0.1126
ICM–07 ICM–02 0.9999
ICM–07 ICM–03 0.9959
ICM–07 ICM–04 0.0237
ICM–07 ICM–05 0.9999
ICM–07 ICM–06 1.0000

Table 7: p-values of the statistical analysis for the quality of
solutions.

Con�guration 1 Con�guration 2 p-value
ICM–04 DE - Classic 0.0000
ICM–04 CM - Linear 9 0.0000
ICM–04 CM - Compact 9 0.0000
ICM–04 ICM–01 0.9999
ICM–04 ICM–02 0.9934
ICM–04 ICM–03 0.9980
ICM–04 ICM–05 0.9466
ICM–04 ICM–06 0.9847
ICM–04 ICM–07 0.3769

6 CONCLUSIONS
In this article, an Island-Cellular Model has been presented and
discussed. �e di�erent con�gurations of the ICM were coupled
to a Di�erential Evolution algorithm and a thorough experimental
analysis of the ICM approach was conducted. �e main goal of this
paper was to study the ICM performance for Large-Scale Global
Optimization problems. In addition to that, we aimed to cover
the lack of knowledge about the in�uence of ICM parameters and
comparison between di�erent ICM con�gurations.

�e results on well-known large-scale benchmark functions
demonstrate that there is a di�erence in the DE performance due
to di�erent con�gurations of ICM approach. �ey also show the
trade-o� between the quality of solutions and convergence speed.
In synthesis, the general experimental results indicate that small
ICM approaches are able to converge faster and achieve good solu-
tions. �e increase of the selection pressure in small models can
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explain its good performance. Moreover, it has been shown that
long migration gaps and naive migratory �ows (Random and Ring)
improve the ICM performance. �e reason for that is likely to be
the population diversity and adequate selection pressure.

Although the CM and DE classic are important versions of this
algorithm to solve optimization problems in continuous space, the
results have been demonstrated the signi�cantly out-performance
of ICM comparing to the other studied approaches. �e exper-
imental analysis of the results presents evidence about the ICM
performance reinforcing its ability to improve the EAs performance.

Concluding this study, it has accomplished its aim producing
knowledge about the ICM approach for EAs leading with Large-
Scale Global Optimization problems. Furthermore, this article will
assist future studies of EAs distributed approaches and their appli-
cations.
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[2] T. Bäck. 1996. Evolutionary Algorithms in�eory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford,
UK.

[3] S. P. Brooks and B. J. T. Morgan. 1995. Optimization using simulated annealing.
�e Statistician: Journal of the Institute of Statisticians 44 (1995), 241–257.

[4] T. Burczynski and W. Kus. 2004. Optimization of Structures Using Distributed and
Parallel Evolutionary Algorithms. Springer Berlin Heidelberg, Berlin, Heidelberg,
572–579.

[5] T. Burczynski, W. Kus, A. Dlugosz, and P. Orantek. 2004. Optimization and
defect identi�cation using distributed evolutionary algorithms. Engineering
Applications of Arti�cial Intelligence 17 (2004), 337–344.
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